Callus growth of red starfruit (Baccaurea angulata) leaves with the addition 2,4-D (dichlorophenoxy acetic acid) and kinetin
Abstrak
Red starfruit (Baccaurea angulata) is a fruit endemic to Kalimantan which is used as a food source and natural medicinal ingredient. The fruit produced is often found without seeds, which is one of the obstacles in generative propagation. Tissue culture is an alternative for propagating red starfruit to obtain seedling or secondary metabolites through callus culture. The research objective was to determine the effect of 2,4-D and kinetin on the callus growth and to obtain the best concentration to induce callus. Experimental research using factorial Completely Randomized Design (CRD), namely 2,4-D (0;0.5;1.0;1.5;2.0;2.5 ppm) and kinetin (0;0.5;1.0;1.5;2.0;2.5 ppm). Observation parameters included the time of callus emergence (after planting), wet and dry weight of the callus (g), color and texture of the callus. The results showed that the combination of 2,4-D and kinetin had a significant effect on the time of callus emergence, but didn’t on the wet and dry weight of the callus. The fastest callus emergence time was obtained of 2.5 ppm 2,4-D and 0.5 ppm kinetin, 1.5 ppm 2,4-D, and 2.5 ppm kinetin namely 6 DAP. The callus color produced is white, brown and brownish with a friable and compact callus texture. Another response that emerged was root growth.
##plugins.generic.usageStats.downloads##
Referensi
Anniasari TD, Putri RBA., & Muliawati ES. (2016). Penggunaan BA dan NAA untuk merangsang pembentukan tunas lengkeng dataran rendah (Dimocarpus longan) secara in vitro. Bioteknologi 13 (2): 43-53. , DOI: 10.13057/biotek/c130201
Ariati, SN., Muslimin, W., & Suwastika, I.N. (2012). Induksi kalus kakao (Theobroma cacao L.) pada media MS dengan penambahan 2,4-D, BAP dan air kelapa. Jurnal natural science. 1(1): 74-78.
Arieswari NNN., Astarini IA., Astiti NPA., & Pramana J. (2018). In Vitro Callus Induction Of ‘Shiraz’ Grape (Vitis vinifera L.) Using Different Medium And Growth Regulator Combination. International Journal Of Bioscience And Biotechnology, 6(1): 25-33.
Asra, R., Ririn, A.S., & Mariana, S. (2020). Hormon Tumbuhan. Jakarta. UKI Press
Astuti RD., Harahap F., & Edi S. (2020). Callus Induction of Mangosteen (Garcinia mangostana L.) In Vitro with Addition of Growth Regulators.. The International Conference on Sciences and Technology Applications. doi:10.1088/1742-6596/1485/1/012029
Bhojwani SS., & Dantu PK. (2013). Plant Tissue Culture: An Introductory Text. Springer. India.
Bhojwani SS., & Razdan MK. (1996). Plant Tissue Culture: Theory and Practice, a Revised Edition. Elsevier. Netherlands.
Dar SA., Nawchoo IA., Tyub S., & Kamili AN. (2021). Effect of plant growth regulators on in vitro induction and maintenance of callus from leaf and root explants of Atropa acuminata Royal ex Lindl. Biotechnology Reports, 32: 1-5. https://doi.org/10.1016/j.btre.2021.e00688
Dwiyani, R. (2015). Kultur Jaringan Tanaman. Bali. Percetakan dan Penerbit Pelawa Sari
Faramayuda F., Irwan M., & Syam AK. (2022). The Growth of Pimpinella alpina Host Callus at Various Treatments of Plant Growth Regulator Concentrations of NAA, 2,4-D and Its Combination with BAP. AGRIC.Jurnal Ilmu Pertanian, 34(2): 171-182.
Gultom MS., Anna N., & Siregar EBM. (2012). Respon Eksplan Biji Gaharu (Aquilaria malaccensis Lamk.) terhadap Pemberian IAA secara In Vitro. Peronema Forestry Science Journal. https://www.neliti.com/id/publications/15 6144/
Gunawan, Chikmawati T., Sobir, & Sulistiyorini. (2018). Distribution, Morphological Variation and New Variety Of Baccaurea Angulata Merr. (Phyllanthaceae). Floribunda. 6(1): 1-11. https://doi.org/10.32556/floribunda.v6i1.2018.226
Hazali N., Mohd Ali MA., Ibrahim M., & Masri M. (2015). Determination of Phytocemichal and Vitamin Content of Underutilized Baccaurea angulata Fruit. Journal Pharmacognosy And Phytochemistry 4(4): 192-196. https://www.phytojournal.com/archives/2015/vol4issue4/PartC/4-3-81.1.pdf
Hemmati N., Cheniany M., & Ganjeali A. (2020). Affect of Plant Regulators and Explants on Callus Induction and Study of Antioxidant Potentials and Phenolic Metabolites in Salvia tebesana Bunge. Botanica SERBICA, 44(2): 163-173.
Ibrahim D., Hazali N., Jauhari N., Nor Omar M., Yahya MNA, Ahmed IA., Mikail MA., & Ibrahim M. (2013). Physicochemical and Antioxidant Characteristic of Baccaurea angulata Fruit Juice Extract. African journal of Biotechnology. 12(34): 5333-5338
Indah PN., & Ermavitalini D. (2013). Induksi Kalus Daun Nyamplung (Calophyllum inophyllum Linn.) pada Beberapa Kombinasi Konsentrasi 6-Benzylaminopurine (BAP) dan 2,4-ichlorophenoxyacetic Acid (2,4-D). Jurnal Sains dan Seni Pomits, 2(1): 1-6. https://ejurnal.its.ac.id/index.php/sains_seni/article/view/2571
Karimian R., Lahouti M., & Davarpanah SJ. (2014). Effects of Different Concentrations of 2, 4-D and Kinetin on Callogenesis of Taxus Brevifolia Nutt. Journal of Applied Biotechnology Report, 1(4): 167-170. https://www.biotechrep.ir/article_69158_81453a8132c66e99d0e8c6d6f96dd8cc.pdf
Khalida, A., Suwirmen dan Z. A. Noli. (2019). Induksi kalus anggrek lilin (Aerides odorata Lour.) dengan pemberian beberapa konsentrasi 2,4-D. Jurnal Biologi Universitas Andalas. 7(2): 109- 117.
Koelling C. (2017) New Frontiers in Plant In Vitro Culture. Academic Pages. New York. USA.
Lestari, E.G. (2011). Peranan Zat Pengatur Tumbuh dalam Perbanyakan Tanaman Melalui Kultur Jaringan. Jurnal Agro Biogen 7(1): 63-68
Martinez ME., Jorquera L., Poirrier P., Díaz K., & Chamy R. (2021). Effect of the Carbon Source and Plant Growth Regulators (PGRs) in the Induction and Maintenance of an In Vitro Callus Culture of Taraxacum officinale (L) Weber Ex F.H. Wigg. Agronomy, 11(1181): 1-17. https://doi.org/10.3390/agronomy11061181
Mikail, M.A., Ahmed, I.A., Ibrahim, M., Hazali, N., Rasad, RMSA., Ghani RA., Hashim, R., Wahab RA., Arief SJ., Md Isa, M.L., Draman, S., & Yahy MNA. (2015). Baccaurea Angulata Fruit Inhibits Lipid Peroxidation And Induces The Increase In Antioxidant Enzyme Activities. European Journal of Nutrition. DOI.10.1007/S00394-015-0961-7
Momand, L., Zakaria, R., Ibrahim, M., Mikail, M., Jalal, T.,., & Wahab, R.A. (2014). Aintimicrobial Effect of Baccaurea angulata Fruit Extracts Against Human Pathogenic Microorganisms. Medical and Aromatic Plants. 3(4): 1-5. DOI: 10.4172/2167-0412.1000172
Musthofa A. (2018). Pengaruh Kombinasi 2,4-D (2,4 Dichloropenoxyacetic Acid) Dan Kinetin Terhadap Induksi Kalus Nilam Aceh Varietas Sidikalang (Pogostemon Cablin Benth.). [Skripsi]. Jurusan Biologi, Fakultas Sains dan Teknologo, Universitas Islam Negeri Maulana Malik Ibrahim, Malang.
Novitasari, Y., & Isnaini, Y. (2021). Propagation Of Pitcher Plants (Nepenthes gracilis KORTH. and Nepenthes reinwardtiana MIQ.) Through Callus Induction. Agric, Jurnal Ilmu Pertanian, 33(2), 81–92. https://doi.org/10.24246/agric.2021.v33.i2.p81-92.
Rahayu, B., Solichatun, & Anggarwulan, E. (2003). Pengaruh Asam 2,4-Diklorofenoksiasetat (2,4-D) Terhadap Pembentukan dan Pertumbuhan Kalus serta Kandungan Flavonoid Kultur Kalus Acalypha indica L. Biofarmasi. 1(1): 1-6. https://core.ac.uk/download/pdf/12345765.pdf
Rasud Y., & Bustaman. (2020). Induksi Kalus secara In Vitro dari Daun Cengkeh (Syizigium aromaticum L.) dalam Media dengan Berbagai Konsentrasi Auksin. Jurnal Ilmu Pertanian Indonesia (JIPI). 25(1): 67-72. https://doi.org/10.18343/jipi.25.1.67
Sanchez, S., & Demain, A.L. (2011). Secondary Metabolites. Comprehensive Biotechnology Journal. pp. 131–143. doi: 10.1016/B978-0-444-64046-8.00012-4
Setiawati, T., Alma, A., & Anandira, W. (2019). Induksi Kalus Krisan (Chrysanthemum morifolium Ramat.) dengan Penambahan Berbagai Kombinasi Zat Pengatur Tumbuh. Jurnal EduMatSains, 3(2): 119-132. https://doi.org/10.33541/edumatsains.v3i2.884
Sudarmono. (2018). Belimbing Darah (Bacaurea angulata Merr.), Buah Keluarga Menteng Endemik Kalimantan dan Kerabatnya. Warta Kebun Raya 16(1): 55-62.
Trigiano RN., & Gray DJ. (2005). Plant Development and Biotechnology. CRC Press. Washington D.C.
Ulva M., Nurchayati Y., Prihastanti E., & Setiari N. (2019). Pertumbuhan Kalus Tomat (Lycopersicon esculentum Mill.) Varietas Permata F1 dari Jenis Eksplan dan Konsentrasi Sukrosa yang Berbeda secara In Vitro. Life Science 8 (2): 160-169. https://doi.org/10.15294/lifesci.v8i2.37103